Abstract
Electromagnetic forming (EMF) is a non conventional metal working process that relies on the use of electromagnetic forces to deform metallic workpieces at high speeds. This study is divided out into three parts. The first part presents a method for calculating the process parameters; namely the electromagnetic problem. An in-house code written in FORTRAN is developed for the electromagnetic tube expansion. In the second part, the results obtained from the in-house code are compared with those obtained from the free finite element magnetic software FEMM. In addition to this verification, the results of the in-house code are compared with the experimental ones available in the literature. The in-house code is then introduced in the finite element commercial code ABAQUS/ Explicit. The third part presents the simulation of the electromagnetic tube bulging forming process for metal tubes using ABAQUS/Explicit with an axi-symmetric model. The simulations have been carried out for Al 1050 aluminium tubes of 1.0mm thickness. This part also provides the comparison between the numerical simulations and the available experimental studies in the literature. Finite element simulations of the tube expansion predicted the experimental trends.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.