Abstract

A spheroidal coordinate separation-of-variables solution has been developed for the determination of the internal, near-surface, and scattered fields of a spheroid (either prolate or oblate) with an embedded source of arbitrary type, location, and orientation. Presented results for (1,0) and (1,1) electric multipoles embedded in 2:1 axis ratio prolate and oblate spheroids (equal volume sphere size parameter equal to 20) illustrate that the presence of the spheroid interface can have a profound effect on the corresponding far-field scattering pattern. The calculation procedure could be used, for example, to model the emission of inelastic scattered light (Raman, fluorescence, etc.) from biological particles of appreciably elongated (prolatelike) or appreciably flattened (oblatelike) geometries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.