Abstract

An appropriate Lagrangian is considered for a system comprising a moving nanoparticle in a semi-infinite space, and the electromagnetic and matter fields are quantized. Through an analysis of the absorbed power radiation, it is demonstrated that the quantum friction experienced by high-velocity nanoparticles can be identified as a dissipative term in the radiation power of the nanoparticle. The absorbed power radiation for a moving nanoparticle is derived and compared with that of a static one. By considering two different temperature scenarios, it is explicitly shown that the absorbed power radiation for a moving nanoparticle always contains a negative term in its power spectrum, which can be attributed to the power lost due to non-contact quantum friction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call