Abstract

An appropriate Lagrangian is considered for a system comprising a moving nanoparticle in a semi-infinite space, and the electromagnetic and matter fields are quantized. Through an analysis of the absorbed power radiation, it is demonstrated that the quantum friction experienced by high-velocity nanoparticles can be identified as a dissipative term in the radiation power of the nanoparticle. The absorbed power radiation for a moving nanoparticle is derived and compared with that of a static one. By considering two different temperature scenarios, it is explicitly shown that the absorbed power radiation for a moving nanoparticle always contains a negative term in its power spectrum, which can be attributed to the power lost due to non-contact quantum friction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.