Abstract

The paper proposes a model of an electromagnetic radiation sensor that uses the precession of the magnetization vector in a ferromagnet (ferromagnetic resonance) as a result of absorbing the energy of an incident electromagnetic wave, the generation of a spin current as a result of this precession, the generation of a spin-polarized current as a result of the passage of a spin current in a non-magnetic metal, and a change in the direction of magnetization of a ferromagnetic layer with a low coercive force (free layer) due to the passage of a spin-polarized current. Then the radiation will be detected by its effect on the electrical resistance of the entire structure, which depends on the mutual directions (parallel or antiparallel) of magnetization of the free and fixed (with a large coercive force) ferromagnetic layers (phenomenon of giant magnetic resistance). The dependence of the spin-polarized current in the device on the frequency and amplitude of the incident electromagnetic wave with linear polarization was calculated. A method of calculating the range of amplitude and frequency values of radiation that can be detected by the sensor has been developed. The parameters of this model are the detection time and the number of spin gates in one sensor. Calculations are given for a ferromagnetic layer made of permalloy and for spin valves with four different critical current values that determine the process of remagnetization of the free layer: 20, 50, 100, and 200 microamps.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call