Abstract

A continuum model, based on a theory of electromagnetic media with microstructure, is exploited to deal with rigid conductors endowed with polarization and magnetization. Charge carriers are considered as a continuum superimposed to the microstructured conductor where the density of bound charges depends on the internal degrees of freedom of the continuum particle. The non-linear dynamical model is formulated, deriving the mechanical balance laws that are coupled with the electromagnetic field equations. A reduction to the micropolar linear case is performed in order to analyze admissible solutions in the form of one-dimensional plane waves. Dispersion equations are derived for modes pertaining to longitudinal and transverse fields and the effects of conductivity and polarization are evidentiated. Polariton modes, arising from the dynamics of microdeformation, are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.