Abstract

From the physical three-vector Maxwell equations for an electromagnetic (E.M.) field in static gravitation, we examine the artifice of replacing the gravitation by an equivalent medium and we find modified Debye potentials for an E.M. wave in a simple, angularly homogeneous, material medium in a Schwarzs-child gravitational field. The fact that these potentials do not obey the generalized scalar wave equation implies that gravitation scatters the vector E.M. wave and a scalar wave differently. Also, we obtain and solve by perturbation the amplitude and eikonal equations for a high-frequency wave in a weak spherical gravitational field. To the order $\frac{M}{r}$, the state of transverse polarization does not change along a ray path whereas the transverse-field amplitudes are modified by the factor ${e}^{\frac{M}{r}}$ which strengthens the field near the mass. The longitudinal-field amplitude, on the other hand, is modified by ${e}^{\frac{\ensuremath{-}M}{r}}$. These effects, in principle, may provide a further test of classical E.M. theory and general relativity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.