Abstract

We develop a static charged stellar model in f(R, T) gravity where the modification is assumed to be linear in T which is the trace of the energy momentum tensor. The exterior spacetime of the charged object is described by the Reissner–Nordström metric. The interior solution is obtained by invoking the Buchdahl–Vaidya–Tikekar ansatz, for the metric potential grr\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$g_{rr}$$\\end{document}, which has a clear geometric interpretation. A detailed physical analysis of the model clearly shows distinct physical features of the resulting stellar configuration under such a modification. We find the maximum compactness bound for such a class of compact stars which is a generalization of the Buchdahl bound for a charged sphere described in f(R, T) gravity. Our result shows physical behaviour that is distinct from general relativity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call