Abstract

We present exact and approximate analytic expressions for the time-averaged electromagnetic energy within dielectric spheres on the basis of rigorous Mie theory. Such information is of importance for the study of photochemical reactions within atmospheric water spheres. Numerical results show that on the average the energy inside a cloud droplet is enlarged by a factor exceeding 2 compared with that of a sphere of the same radius of the surrounding medium. In regions of resonance peaks the electromagnetic energy may be increased by more than 2 orders of magnitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.