Abstract

We have derived, for oblique propagation, an equation relating the averaged energy flux density to energy fluxes arising in the process of scattering by a lossless finite photonic structure. The latter fluxes include those associated with the dispersion relation of the structure, reflection, and interference between the incident and reflected waves. We have also derived an explicit relation between the energy flux density and the group velocity, which provides a simple and systematical procedure for studying theoretically and experimentally the properties of the energy transport through a wide variety of finite photonic structures. Such a relation may be regarded as a generalization of the corresponding one for infinite periodic systems to finite photonic structures. A finite, N-period, photonic crystal was used to illustrate the usefulness of our results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call