Abstract

The electromagnetic eigenfrequencies fnsm in perfectly conducting concentric spheroidal-spherical cavities are determined analytically. Two types of cavities are examined, one with spheroidal outer and spherical inner boundary and inversely for the other. The problem is solved by two different methods. In the first, the electromagnetic field is expressed in terms of both spherical and spheroidal eigenvectors, connected with one another by well-known expansion formulas. In the second, a shape perturbation method, the field is expressed in terms of spherical eigenvectors only, while the equation of the spheroidal boundary is given in spherical coordinates. The analytical determination of the eigenfrequencies is possible for small values of h = d/(2R2), (h « 1), with d the interfocal distance of the spheroidal boundary and 2R2 the length of its rotation axis. In this case exact, closed-form expressions are obtained for the expansion coefficients 9(2)nsm and 9(4)nsm in the resulting relation fnsm (h) = fns (0) [1 + h2 9(2)nsm + h4 9(4)nsm + O(h6)] . Analogous expressions are obtained by using the parameter v = 1 - (R2/R'2)2 (for lvl « 1) , with 2R'2 the length of the other axis of the spheroidal boundary. Numerical results are given for various values of the parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.