Abstract

The effects of electromagnetic forces on charged interstellar grains and β-meteoroids - both moving on hyperbolic orbits - are investigated. It is shown that the unipolar field regimes at high latitudes lead either to a “focussing” or a “defocussing” of interstellar dust and β-meteoroids with respect to the solar magnetic equator. This should lead to a solar cycle variation. The stochastic magnetic fluctuations in the equatorial region, caused by the warping of the current sheet which separates the polar fields, lead to a diffusive description of particle transport at the low mass end. Consequences for the ability of interstellar dust particles to penetrate the inner heliosphere are discussed. It is concluded that dust particles with radii s > 10−5cm can penetrate deeply into the heliosphere if their incidence direction at the heliopause is almost radially inward and close to the solar magnetic equatorial plane, whereas dust particles with radii s < 10−5 cm are prevented from reaching the inner heliosphere. The relationship between interstellar dust and β-meteoroids is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call