Abstract

In this paper we explore the potential of one-dimensional and two-dimensional deterministic aperiodic plasmonic arrays for the design of electromagnetic coupling and plasmon-enhanced, sub-wavelength optical fields on chip-scale devices. In particular, we investigate the spectral, far-field and near-field optical properties of metal nanoparticle arrays generated according to simple deterministic sequences characterized by fractal Fourier spectra. Additionally, we will consider the case of flat Fourier-transform sequences, which reproduce the behavior of purely random systems to an arbitrary degree of accuracy. Based on the coupled dipole approach (CDA) and finite difference time domain (FDTD) simulations, we study the radiative (long-range) and quasi-static (short-range) electromagnetic coupling in deterministic aperiodic plasmon arrays of metal nanoparticles. In addition, we investigate the local field enhancement and the enhancement scaling in periodic and aperiodic arrays with increasing degree of complexity. We believe that the accurate control of electromagnetic coupling and sub-wavelength field enhancement in deterministic aperiodic environments will enable novel nanodevice applications in areas such as field-enhanced nanosensors, engineered SERS substrates and optical nano-antenna arrays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call