Abstract

The International Space Station (ISS) is a laboratory for scientific research, innovative technology development, and global education. The ISS provides a number of facilities and platforms for payload developers and investigators to conduct biological, microgravity, and Earth and space observation science, as well as for performing technology development. Due to the unique nature of the ISS vehicle and its electrical power and data systems, achieving electromagnetic compatibility (EMC) with the vehicle requires special considerations by the payload developer. The ISS electromagnetic interference (EMI) requirements and test methods are based on MIL-STD-461, “Electromagnetic Emissions and Susceptibility Requirements for the Control of Electromagnetic Interference”, Revision C, and MIL-STD-462, “Electromagnetic Interference Characteristics, Measurement of,” respectively. The low source impedance of the test setup requires special considerations when designing or selecting EMI power filters and switched mode power supplies. Many filters, suited for later revisions of MIL-STD-461, will result in non-compliant designs. ISS electrical power system power quality requirements, imposed to protect the stability of the system, can also affect EMI filter design. The selection and use of commercial-off-the-shelf (COTS) equipment for ISS applications requires special considerations to meet both EMC and crew safety requirements. Furthermore, the ISS environment can provide unique immunity challenges; if the payload developer ignores these challenges, the result is a possible loss of science or impact to technology demonstration. The ISS provides a unique opportunity for the science and technology development community. However, in order to be successful, the payload developer must incorporate special EMC considerations, many of which will be presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call