Abstract

Electromagnetic characterization of carbon nanotube (CNT) films fabricated by thermal decomposition of silicon carbide (SiC) has been performed. A near-field microwave microscope is used to measure the real and imaginary parts of the complex permittivity of CNT films through the frequency shift and the change in reciprocal quality factor between two extreme positions of an evanescent microwave probe tip (in contact with the sample, and away from interaction with it). A theoretical two-point model is proposed to confirm experimental data, which shows poor conductivity of the CNT film. A comparison of our results with existing theoretical models and experimental data is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.