Abstract

Recently, interaction of electromagnetic waves with conducting interfaces has been studied and several applications have been proposed. For instance, new type of photonic crystals similar to Kronig-Penny electronic crystals has been implemented by using these structures. In these structures a free two dimensional interface charge layer is generated at the dielectric interfaces and interesting phenomena are observed. In this manuscript, the effect of finite charge layer thickness and its asymptotic behavior toward conducting interface, where the thin charge layer is modelled via a surface conductivity &#963;<sub>s</sub>, is numerically studied for the first time. Two different regimes are considered: first, propagation of optical waves through sub-wavelength free charge layers and its corresponding reflection and transmission coefficients for both major polarizations TE and TM; second, propagation of optical slow waves localized at the interface of two dielectrics with interface conducting layer between them..

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.