Abstract
The dielectric-magnetic synergistic effect can be achieved by dielectric relaxation and magnetic resonances in composites of carbon materials and magnetic particles. However, there is no direct evidence demonstrating the distribution of electromagnetic energy attenuation in the microstructure of composites. Herein, an amorphous carbon matrix with dispersed Fe/Fe3C@graphite-C was fabricated via a facile route. The distribution of the magnetic vector loss and electric vector loss in the hierarchical structures was revealed by numerical simulation. The content and dispersion of magnetic particles as well as the morphology of the amorphous carbon can be tuned. The 3D amorphous carbon matrix with highly dispersed Fe/Fe3C@graphite-C nanoparticles provided the strongest absorption of −69.0 dB and an effective response bandwidth (RL ≤ −10 dB) of 7.06 GHz. The numerical simulation revealed that the magnetic vector loss originated only from the core of Fe/Fe3C, and the electric vector loss was distributed throughout the structure, especially in the graphite-C shell, the interface between graphite-C and carbon nanoflakes, and the junction of different carbon nanoflakes. This work not only reveals the distribution of electromagnetic loss but also supports the theoretical analysis of the electromagnetic wave attenuation mechanism in composites, which provides direction for the future design of composites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.