Abstract

An electromagnetic anti-fouling technology (EAFT) was developed further. The operating principle of the EAFT was presented using fundamental physics laws. To validate the effect of EAFT and identify the mechanism, a circulating flow setup was built. A series of fouling tests were carried out with and without EAFT, measuring fouling thermal resistance as function of time, making scanning electron microscope images and analyzing the particles size distribution in solution by dynamics light scattering technology. The main results were as follows: 1) All the precipitated crystals in solution were calcite and there were little differences between with EAFT and without EAFT in the experimental range. 2) The number of precipitate nucleation in solution was small and the particle growth was slow without EAFT. In opposition to the case untreated, a rapid particle growth was observed and the number of nucleation was expected to be large, due to the fact that the EAFT effectively increases the ions and crystals collision frequency and effectiveness by utilizing the induced electric field. It is indicated that the particle growth is promoted mainly by coagulation process but not nucleation growth. 3) The EAFT could prolong the delay time of fouling greatly, and after the delay time, the thermal resistance quickly increased. Therefore, in order to mitigate scale significantly, the floccules in solution should be deposited beforehand in a low-lying area of the exchangers and let off in time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.