Abstract

We compute electromagnetic and two-photon transition form factors of ground-state pseudoscalar mesons: π,K,ηc,ηb. To this end, we employ an algebraic model based upon the coupled formalism of Schwinger-Dyson and Bethe-Salpeter equations. Within this approach, the dressed quark propagator and the relevant Bethe-Salpeter amplitude encode the internal structure of the corresponding meson. Electromagnetic properties of the meson are probed via the quark-photon interaction. The algebraic model employed by us unifies the treatment of all ground-state pseudoscalar mesons. Its parameters are carefully fitted performing a global analysis of existing experimental data including the knowledge of the charge radii of the mesons studied. We then compute and predict electromagnetic and two-photon transition form factors for a wide range of probing photon momentum-squared which is of direct relevance to the experimental observations carried out thus far or planned at different hadron physics facilities such as the Thomas Jefferson National Accelerator Facility (JLab) and the forthcoming Electron-Ion Collider. We also present comparisons with other theoretical models and approaches and lattice quantum chromodynamics. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.