Abstract

This paper describes the optimization methodology used in the design of a slotted tubular permanent-magnet actuator for industrial applications. A time-effective optimization procedure is obtained by considering simple analytical design equations in coherence with 2-D finite-element analysis as means to establish the various design variables. The optimization is performed in a multiphysics environment because both electromagnetic and thermal models are created and used in the optimization routine. The original optimization problem is replaced by a surrogate, which is updated or improved iteratively by means of a space-mapping-based technique. Its application for solving coupled magnetic-thermal design problems for electric machines is a rather unexplored topic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call