Abstract

The intra-layer no-insulation (LNI) layer-wound REBCO coil has been widely studied for its excellent high thermal stability in the research of nuclear magnetic resonance superconducting magnets. Due to the complex structure of the LNI layer-wound coil and the numerous factors that affect thermal stability, its quench characteristics are not clear. In this paper, a numerical multiphysics coupling model is established to study the transient electromagnetic and thermal behaviors of the LNI layer-wound coil during quench. The results indicate that temperature follows the diffusion law, while the currents evolve through electrical connection and electromagnetic induction. Due to the high contact resistance, the azimuthal current and axial current vary almost in units of the entire coil layer. The direction of the radial current upstream of the turn where a quench occurs is positive due to the bypassing behavior, while the radial current direction is negative downstream. The insulation material inside the LNI layer-wound coil strongly affects the quench propagation. When its thickness decreases, the equivalent radial thermal conductivity increases, thereby increasing the quench propagation velocity and current peak, and shortening the duration of the current response during quench.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call