Abstract

The magnetic field and current of a coil wound with a cable-in-conduit conductor causes a transverse force pushing the cable to one side of the conduit. This load causes elastic and plastic deformation with friction as well as heating due to friction. A special cryogenic press has been built to study the mechanical and electrical properties of full-size ITER conductors under transverse mechanical loading. The cryogenic press can transmit at 4.2 K cyclic forces of 650 kN/m to conductor sections of 400 mm length representative of the peak load on a 50 kA conductor at 13 T. In order to transmit the force directly onto the cable, the conduit is opened partly to allow the cable deformation. The force acting on the cable as well as the displacement are monitored simultaneously in order to determine the mechanical heat generation due to friction. The mechanical loss under load is investigated for the Nb/sub 3/Sn, 45 kA, 10 and 13 T, central solenoid model cell conductors (CSMC). The mechanical heat generation is determined from the hysteresis in the measured curves of displacement versus applied force. The first results of the effect of some 40 loading cycles are presented and the two conductors are compared. A significant decrease of the cable mechanical heat generation after loading cycles is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.