Abstract
Origami robots characterized by rigid plates linked together with flexible joints have inherent compliance and large deformations. Their low-profile design and folding mechanical transmissions provide substantial force and torque, especially for wearables and human-interactive devices. The current major limitation in the field is the need for embeddable dynamic actuation systems that produce actuation frequencies similar to human motion. In this study, we propose a novel low-profile printable electromagnetic actuator that can be integrated into thin large robotic surfaces made of rigid panels and into the streamlined pushbutton manufacturing process. We use already existing variable stiffness joints to demonstrate the scalability and distributable properties of the proposed actuation system on a locally controllable variable-stiffness distributed surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.