Abstract

Electrolytic plasma processing (EPP) involves electrolysis and electrical discharge phenomena and it is an emerging, environmentally friendly surface engineering technology. Electrolytic-plasma/material surface interactions during processing can be used for cleaning of metal surfaces, formation of diffusion layers and/or deposition of metal, ceramic and composite coatings. The present work was concerned with cleaning and deposition of metal coatings on steel surfaces for corrosion protection. The effects of processing parameters on (i) cleaning steel surfaces (oxides and contamination); and (ii) Zn and Zn–Al coating deposition were investigated. Surface roughness and oxygen content prior to and after cleaning were evaluated by profilometry and energy dispersive X-ray analysis (EDAX), respectively. The structure of the EPP cleaned outer surface layer as it evolves after the electrolytic–plasma interaction was studied by high resolution TEM. Morphology, microstructure, composition, adhesion and density of EPP-deposited Zn and Zn–Al coatings on cleaned surfaces were studied as a function of processing parameters. Corrosion properties of the cleaned and coated steels were evaluated by corrosion potential and potentiodynamic polarization measurements. The results show that EPP can effectively produce clean surfaces and also metal and alloy coatings at high deposition rates, and it has a great potential as a new plasma surface engineering technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call