Abstract
Among the current battery technologies, lithium-ion batteries (LIBs) are essential in shaping future energy landscapes in stationary storage and e-mobility. Among all components, choosing active cathode material (CAM) limits a cell’s available energy density (Wh kg−1), and the CAM selection becomes critical. Layered Lithium transition metal oxides, primarily, LiNixMnyCozO2 (NMC) (x + y + z = 1), represent a prominent class of cathode materials for LIBs due to their high energy density and capacity. The battery performance metrics of NMC cathodes vary according to the different ratios of transition metals in the CAM. The non-electrode factors and their effect on the cathode performance of a lithium-ion battery are as significant in a commercial sense. These factors can affect the capacity, cycle lifetime, thermal safety, and rate performance of the NMC battery. Additionally, polycrystalline NMC comprises secondary clusters of primary crystalline particles prone to pulverization along the grain boundaries, which leads to microcrack formation and unwanted side reactions with the electrolyte. Single-crystal NMC (SC-NMC) morphology tackles the cycling stability issue for improved performance but falls short in enhancing capacity and rate capability. The compatibility of different combinations of electrolytes and additives for SC-NMC is discussed, considering the commercial aspects of NMC in electric vehicles. The review has targeted the recent development of non-aqueous electrolyte systems with various additives and aqueous and non-aqueous binders for NMC-based LIBs to stress their importance in the battery chemistry of NMC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.