Abstract

AbstractCalcium‐metal batteries (CMBs) provide a promising option for high‐energy and cost‐effective energy‐storage technology beyond the current state‐of‐the‐art lithium‐ion batteries. Nevertheless, the development of room‐temperature CMBs is significantly impeded by the poor reversibility and short lifespan of the calcium‐metal anode. A solvation manipulation strategy is reported to improve the plating/stripping reversibility of calcium‐metal anodes by enhancing the desolvation kinetics of calcium ions in the electrolyte. The introduction of lithium salt changes the electrolyte structure considerably by reducing coordination number of calcium ions in the first solvation shell. As a result, an unprecedented Coulombic efficiency of up to 99.1 % is achieved for galvanostatic plating/stripping of the calcium‐metal anode, accompanied by a very stable long‐term cycling performance over 200 cycles at room temperature. This work may open up new opportunities for development of practical CMBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.