Abstract

Anodic dissolution and cathodic deposition of 20 transition metals in acidic solutions in liquid ammonia has been surveyed. The early transition metal elements Ti, Zr, V Nb, Mo and W form high oxidation-state insoluble amido complexes during anodic oxidation. Soluble ammines of normal metal oxidation states are produced with Cr(III), Mn(II), Fe(II), Co(III), Ni(II), Cu(II), Ag(I), Zn(II), Cd(II) and Hg(II) (Mn dissolves spontaneously). The metals Ru, Pd, Pt and Au only dissolve slightly after prolonged electrolysis. Anodic enrichment of Au in its alloys is unlike that in aqueous solution; in ammonia both Cu and Ag can be simultaneously depleted from a 9 carat gold alloy. Cathodic reduction of metal-bearing solutions follows wide variations of behaviour. Fe and Ru ammines reduce to amido-complexes with concomittant hydrogen evolution, but Cr is not reduced. Solutions of Mn, Co, Ni, Pd, Pt, Ag, Au, Zn, Cd and Hg give metallic cathode deposits under differing conditions. Electrodeposition is potential dependent for Ni, Cu and Ag; metal plate at low potentials, and powders at high potentials. The two different products are the result of reduction of species with different degrees of solvation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.