Abstract

Aqueous zinc ion batteries (AZIBs) have emerged as a promising battery technology due to their excellent safety, high capacity, low cost, and eco-friendliness. However, the cycle life of AZIBs is limited by severe side reactions and zinc dendrite growth on the zinc electrode surface, hindering large-scale application. Here, an electrolyte optimization strategy utilizing the simplest dipeptide glycylglycine (Gly-Gly) additive is first proposed. Theoretical calculations and spectral analysis revealed that, due to the strong interaction between the amino group and Zn atoms, Gly-Gly preferentially adsorbs on zinc's surface, constructing a stable and adaptive interfacial layer that inhibits zinc side reactions and dendrite growth. Furthermore, Gly-Gly can regulate zinc ion solvation, leading to a deposition mode shift from dendritic to lamellar and limiting two-dimensional dendrite diffusion. The symmetric cell with the addition of a 20 g/L Gly-Gly additive exhibits a cycle life of up to 1100 h. Under a high current density of 10 mA cm-2, a cycle life of 750 cycles further demonstrates the reliable adaptability of the interfacial layer. This work highlights the potential of Gly-Gly as a promising solution for improving the performance of AZIBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call