Abstract

Electrolyte-gated (EG) transistors, based on electrolyte gating media, are powerful device structures to modulate the charge carrier density of materials by orders of magnitude, at relatively low operating voltages (sub-2 V). Tungsten trioxide (WO3) is a metal oxide semiconductor well investigated for applications in electrochromism, sensing, photocatalysis, and photoelectrochemistry. In this work, we report on EG transistors making use of mesoporous nanostructured WO3 thin films easily permeated by the electrolyte as the transistor channel and bis(trifluoromethylsulfonyl)imide ([TFSI])-based ionic liquids as the gating media. The WO3 EG transistors operate at ca. 1 V. Using a combination of cyclic voltammetry, X-ray diffraction, and transistor performance characterizations, complemented by spectroscopic (Raman and infrared) investigations, we correlate the metal oxidation state and the charge transport properties of the metal oxide, shedding light on the doping process in electrically biased WO3 nanostru...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.