Abstract

AbstractRechargeable aqueous zinc‐ion batteries (AZBs), with their high theoretical capacity, low cost, safety, and environmental friendliness, have risen as a promising candidate for next‐generation energy storage. Despite the fruitful progress in cathode material research, the electrochemical performance of the AZB remains hindered by the physical and chemical instability of the Zn anode. The Zn anode suffers from dendrite growth and chemical reactions with the electrolyte, leading to efficiency decay and capacity loss. Recently, significant effort has been dedicated to regulating the Zn anode. Electrolyte manipulation, including tailoring the salt, additives, or concentration, is a useful strategy as the electrolyte strongly influences the anode's failure processes. It is thus worthwhile to gain an in‐depth understanding of these electrolyte‐dependent regulation mechanisms. With this in mind, this review first outlines the two main issues behind Zn anode failure, dendrite growth, and side reactions. Subsequently, an understanding of the electrolyte tailoring strategy, namely, the influence of the salt, additive, and concentration on the Zn anode, is provided. We conclude by summarizing the future prospects of the Zn metal anode and potential electrolyte‐based solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.