Abstract
Aqueous zinc-ion batteries (AZIBs) are promising candidates for the large-scale energy storage systems due to their high intrinsic safety, cost-effectiveness and environmental friendliness. However, issues such as dendrite growth, hydrogen evolution reaction, and interfacial passivation occurring at the anode/electrolyte interface (AEI) have hindered their practical application. Constructing a stable AEI plays a key role in regulating zinc deposition and improving the cycle life of AZIBs. The fundamentals of AEI and the challenges faced by the Zn anode due to unstable interfaces are discussed. A comprehensive summary of electrolyte regulation strategies by electrolyte engineering to achieve a stable Zn anode is provided. The effectiveness evaluation techniques for stable AEI are also analyzed, including the interfacial chemistry and surface morphology evolution of the Zn anode. Finally, suggestions and perspectives for future research are offered about enabling a durable and stable AEI via electrolyte engineering, which may pave the way for developing high-performance AZIBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of Nonferrous Metals Society of China
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.