Abstract

The oscillatory reduction of hydrogen peroxide on an n-type gallium arsenide electrode was studied by means of the electrolyte electroreflectance technique. It is found that during the current oscillations both the reflectivity and electroreflectance oscillate with qualitatively different patterns. A simple model, which attributes the current oscillations to an anomalous dependence of the band bending in the semiconductor depletion layer on the potential drop across the semiconductor/electrolyte interface, is considered for comparison. It is concluded that the absolute reflectivity detects a slow variable of the system, most likely related to the chemical composition of the surface, and the electroreflectance detects a fast variable of the system, most likely related to the interfacial potential distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.