Abstract

Discovering inexpensive and earth-abundant electrocatalysts to replace the scarce platinum group metal-based electrocatalysts holds the key for large-scale hydrogen fuel generation, which relies heavily on the theoretical understanding of the properties of candidate materials and their operating environment. The recent applications of the cobalt–dithiolene complex as promising electrocatalysts for the hydrogen evolution reaction have been broadened by forming low-dimensional metal–organic frameworks (MOFs) through polymerization. Using the Gibbs free energy of the adsorption of hydrogen atoms as a key descriptor, S atoms within one-dimensional MOFs are identified to be the preferred catalytic site for HERs. Our theoretical results further reveal that the activities of part S atoms can be improved by interacting with alkali metal cations from the electrolytes; specifically, the influence of cations on the performance is dependent on the electron affinity of cations. Our theoretical findings, therefore, demonstrate that the selection of electrolytes can be a promising approach to enhance the performance of electrocatalysts for HERs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.