Abstract

Due to its adaptability in scaling up, a redox flow battery (RFB) is seen to be one of the finest options for large-scale electrical backup systems. As a result, it is feasible to create RFB systems that are both cost and performance effective. Recently, a zinc-manganese RFB that relies on Zn(s)/Zn2+(aq) and Mn2+(aq)/MnO2 redox couples has gained attention since both zinc and manganese are cheap, abundant, and eco-friendly. However, the reversibility of Mn2+(aq)/MnO2 at the positive electrode is limited by the formation of Mn3+ species upon charge/discharge (CD) cycling, resulting in severe capacity fading. Herein, this study examines the use of reducing agents as electrolyte additives to enhance the reversibility of the Mn2+(aq)/MnO2 reaction. Experimental results indicate that sulfuric acid and oxalic acid as additives can significantly improve the reversibility of the Mn2+(aq)/MnO2 reaction and the cycling stability of zinc-manganese RFBs. The acetate-based system demonstrates better reversible reaction than the sulfate-based system having more than 100 CD cycles at a current density of 10 mA/cm2. Coulombic efficiency (CE) is also seen to be higher than 90%. Overall, results lead to increased efficiency and cycling stability for zinc-manganese RFBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.