Abstract
A facile one-pot synthesis to produce micrometer-sized silica particles with low polydispersity was examined in a semibatch process where an ethanol solution of tetraethyl orthosilicate (TEOS) was continuously supplied to another ethanol solution of water and ammonia containing an electrolyte of LiCl, NaCl, or KCl. Supply rates of the TEOS solution was ranged with the water and electrolyte concentrations, which indicated that the addition of KCl at a low water concentration was effective to increase size of silica particles in a micrometer range. Highly monodisperse silica particles with an average size of 6.6 microm were successfully produced at 3 mol/m(3) KCl and 5 kmol/m(3) water. The efficiency of KCl addition for producing the large particles is interpreted by the previously proposed nucleation and growth mechanism that expects rapid particle coagulation in early reaction stage for particles which have reduced surface potential by the adsorption of cations with a large ionic radius. It is confirmed from competitive growth reactions that the silica particle growth follows the reaction-limited mechanism even in the semibatch process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.