Abstract

A single layer of dense Si quantum dots with average size of 4 nm sandwiched in amorphous SiN layers was prepared by laser crystallization of ultrathin amorphous Si film followed by subsequently thermal annealing. The electroluminescent diodes were fabricated by evaporating Al electrodes on back sides of p-Si substrates and the top surface of samples. Room temperature electroluminescence can be detected with applying the negative voltage around 10V on the top gate electrode and the luminescent intensity is increased with increasing the applied voltage. It was found that the integrated luminescent intensity is linearly proportional to the injection current which suggested the intensity depends on the concentrations of injected carriers after Fowler-Nordheim tunneling through amorphous SiN barriers. The influence of the amorphous SiN with different band gap on the device performance was also discussed briefly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.