Abstract

We have demonstrated that fabrication and characterization of nanocomposite polymer light emitting devices with metal Zinc Oxide (ZnO) nanoparticles and 2,3-dibutoxy-1,4-poly(phenylenevinylene) (DBPPV). The current and luminance characteristics of devices with ZnO nanoparticles are much better than those of device with pure DBPPV. Optimized maximum luminance efficiencies of DBPPV–ZnO (3:1 wt%) before annealing (1.78 cd/A) and after annealing (2.45 cd/A) having a brightness 643 and 776 cd/m2at a current density of 36.16 and 31.67 mA/cm2are observed, respectively. Current density–voltage and brightness–voltage characteristics indicate that addition of ZnO nanoparticles can facilitate electrical injection and charge transport. The thermal annealing is thought to result in the formation of an interfacial layer between emissive polymer film and cathode.

Highlights

  • Polymer light emitting devices (PLEDs) have attracted much attention in recent years, due to their potential applicability to flat, large area displays [1,2,3]

  • An n-type semiconductor material Zinc Oxide (ZnO) possesses a direct wide band gap (3.2 eV), a large exciton binding energy (60 meV) with strong piezoelectric and pyroelectric properties. It is one of the most promising candidates for the fabrication of short wavelength optoelectronic devices [18,19,20]. This could be the first report of PLEDs, which consists of DBPPV and the inorganic semiconductor metal oxide (ZnO)

  • We obviously found that for ZnO-doped DBPPV, the emission peak from the inter-chain vibration of DBPPV was reduced, which perhaps is the possible reason that the nanoparticles assist the polymer arrangement and reduce the conformational disorder of polymer in the emission layer, and cause the probability for inter-chain emission of device to reduce

Read more

Summary

Introduction

Polymer light emitting devices (PLEDs) have attracted much attention in recent years, due to their potential applicability to flat, large area displays [1,2,3]. Nanoparticles composite materials consisting of conjugated polymers and metal oxides are the focus of interest due to their physical, electronic and optical properties. An n-type semiconductor material ZnO possesses a direct wide band gap (3.2 eV), a large exciton binding energy (60 meV) with strong piezoelectric and pyroelectric properties. It is one of the most promising candidates for the fabrication of short wavelength optoelectronic devices [18,19,20]. This could be the first report of PLEDs, which consists of DBPPV and the inorganic semiconductor metal oxide (ZnO)

Experimental Procedure
Results and Discussion
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call