Abstract

The perovskite light-emitting diodes (Pe-LEDs) with the structure of Ag/Spiro-OMeTAD/CH3NH3PbI3/TiO2/FTO were synthesized, where the CH3NH3PbI3 perovskite layer was deposited by a two-step spin-coating process. A dominant near-infrared electroluminescence (EL) at 773nm was detected from the Pe-LEDs under forward bias at room temperature. The origin and mechanism of the EL were discussed in comparison with the photoluminescence (PL) spectra, and it was attributed to the radiative recombination of electrons and holes confined in the CH3NH3PbI3 emissive layer. Moreover, the corresponding energy band diagrams was proposed to illustrate the carrier transport mechanism in the Pe-LED device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call