Abstract

We propose a storage memory device that enables bit densities of >1 Tbit/mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> based on the electro- deposition and electrodissolution of multilayered metal stacks in deep nanometer-sized wells. This device addresses the challenge of bit density scaling slowdown expected for 3-D NAND flash beyond 2030. We describe in detail the operating principles and discuss the response time, bandwidth, retention, and cycling endurance requirements for the device to be viable. As a proof-of-principle, we provide a first demonstration of the write/read (W/R) mechanism on millimeter- and micrometer-sized electrodes and show the device’s potential for reaching very high bit densities. To evaluate how the response time scales for the envisioned nanometer-sized electrodes, we derive simple analytical expressions based on finite element simulations that relate the well depth, radius, and electrolyte composition to the deposition/dissolution rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call