Abstract

The electroless deposition of Pt nanoparticles (Pt-NPs) could be carried out by dissolving potassium tetrachloroplatinate(II) (K2[PtCl4]) in 1-ethyl-3-methylimidazolium (EMI(+)) room-temperature ionic liquids (RTILs) containing bis(trifluoromethylsulfonyl) imide (NTf2(-)) or tetrafluoroborate (BF4(-)) anion and small cations, such as H(+), K(+), and Li(+). In this case, no deposition of Pt-NPs occurred in RTILs without such small cations. The formation of Pt-NPs was only observed in RTILs containing trifluoromethanesulfonimide (HNTf2) and protons at high temperature (≥80 °C) when potassium hexachloroplatinate(IV) (K2[PtCl6]) was dissolved in the RTILs. The obtained Pt-NPs gave a characteristic absorption spectrum of ultrasmall Pt-NPs. The ultrasmall and uniform Pt-NPs of ca. 1-4 nm in diameter were produced and the Pt-NPs/EMI(+)NTf2(-) dispersion was kept stably for several months without adding any additional stabilizers or capping molecules. The identified Fourier-transform patterns along the [0 1 1] zone axis were observed for the TEM images of Pt-NPs. On the basis of the results obtained, a probable mechanism of the electroless formation of Pt-NPs is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call