Abstract

The ability to codeposit particulate matter in a matrix of electroless nickel has led to a new generation of composite coatings with unique properties, such as high hardness wear, abrasion, corrosion and high temperature oxidation resistance. In this paper, the authors report on the development of electroless Ni–P–kaolin composite coating, and the characteristic properties of the selected deposits were evaluated by scanning electron microscopy, energy dispersive X-ray and X-ray diffraction techniques. A good rate of deposition of 12 μm h−1 was observed for the optimised concentration of 6 g L−1 of kaolin in the bath. For the optimised bath composition and operating conditions, the composite deposit was found to contain 81·7%Ni, 9·8%P and 10·5%kaolin. Heat treatment at 400°C for 1 h results in an increase in the hardness and wear resistance of the composite coating. The corrosion resistance is also highly enhanced by the incorporation of kaolin in the nickel–phosphorus matrix. The crystallite size of the composite coating is 20 nm, and the codeposition of kaolin follows the Langmuir adsorption isotherm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.