Abstract

Thermite, a composite of metal and metal oxide, finds wide applications in power and thermal generation systems that require high-energy density. Most of the researches on thermites have focused on using aluminum (Al) particles as the fuel. However, Al particles are sensitive to electrostatic discharge, friction, and mechanical impact, imposing a challenge for the safe handling and storage of Al-based thermites. Silicon (Si) is another attractive fuel for thermites because of its high-energy content, thin native oxide layer, and facile surface functionality. Several studies showed that the combustion properties of Si-based thermites are comparable to those of Al-based thermites. However, little is known about the ignition properties of Si-based thermites. In this work, we determined the reaction onset temperatures of mechanically mixed (MM) Si/Fe2O3 nanothermites and Si/Fe2O3 core/shell (CS) nanothermites using differential scanning calorimetry. The Si/Fe2O3 CS nanothermites were prepared by an electroless deposition method. We found that the Si/Fe2O3 CS nanoparticles (NPs) had a lower reaction onset temperature (∼550 °C) than the MM Si/Fe2O3 nanothermites (>650 °C). The onset temperature of the Si/Fe2O3 CS nanothermites is also insensitive to the size of the Si core NP. These results indicate that the interfacial contact quality between Si and Fe2O3 is the dominant factor for determining the ignition properties of thermites. Finally, the reaction onset temperature of the Si/Fe2O3 CS NPs is comparable to that of the commonly used Al-based nanothermites, suggesting that Si is an attractive fuel for thermites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.