Abstract

Conventional techniques for detection of bacteria/cell and assessment of cancer cell typically use DNA techniques, Western blot and ELISA kits that are high cost, complicated processes and long time consuming. Our researches focus on rapid, portable, simple and highly sensitive separation and detection of cells/bacteria/biomolecules for field-use diagnosis. An ideal portable biosensor (molecular or whole cells detections) unit must have several important features: rapid detection time (<10 minutes), high sensitivity (pM level for molecular detection, 103 cells/ml for whole cell detection), high specificity, small and inexpensive instrumentation configuration. Electrochemical impedance/conductance sensing is preferred over optical detection because of cost and portability concerns. Cancer cell detection using heterogeneous medical samples require continuous isolation, sorting, and trapping of the target bioparticles and immunocolloids within a diagnostic chip. We have developed several electrokinetic strategies to rapid separation, concentration and detection of cells/bacteria/biomolecules in a microfluidic chip using such as dielectrophoresis (DEP), traveling-wave dielectrophoresis (twDEP) and electrohydrodynamics (EHD). Several key techniques we done, which on a rapid/simple/label-free detection platform for the highly sensitive on-chip separation/identification/quantification will be introduced in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.