Abstract

The fundamental understanding of particle electrokinetics in microchannels is relevant to many applications. To date, however, the majority of previous studies have been limited to particle motion within the area of microchannels. This work presents the first experimental and numerical investigation of electrokinetic particle entry into a microchannel. We find that the particle entry motion can be significantly deviated from the fluid streamline by particle dielectrophoresis at the reservoir-microchannel junction. This negative dielectrophoretic motion is induced by the inherent non-uniform electric field at the junction and is insensitive to the microchannel length. It slows down the entering particles and pushes them toward the center of the microchannel. The consequence is the demonstrated particle deflection, focusing, and trapping phenomena at the reservoir-microchannel junction. Such rich phenomena are studied by tuning the AC component of a DC-biased AC electric field. They are also utilized to implement a selective concentration and continuous separation of particles by size inside the entry reservoir.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call