Abstract

The purpose of this present study is to prepare a stable mineral-oil (MO)-based nanofluid (NF) for usage as a coolant in a transformer. Nanoparticles (NPs) such as hexagonal boron nitride (h-BN) and titanium oxide (TiO2) have superior thermal and electrical characteristics. Their dispersion into MO is likely to elevate the electrothermal properties of NFs. Therefore, different batches of NFs are prepared by uniformly dispersing the insulating h-BN and semiconducting TiO2 NP of different concentrations in MO. Bulk h-BN NP of size 1μm is exfoliated into 2D nanosheets of size 150–200 nm, subsequently enhancing the surface area of exfoliated h-BN (Eh-BN). However, from the zeta-potential analysis, NP concentration of 0.01 and 0.1 wt.% are chosen for further study. The thermal conductivity and ACBDV studies of the prepared NF are performed to investigate the cooling and insulation characteristics. The charging-dynamics study verifies the enhancement in ACBDV of the Eh-BN NF. Weibull statistical analysis is carried out to obtain the maximum probability of ACBDV failure, and it is observed that 0.01 wt.% based NF has superior cooling and insulation properties than MO and remaining batches of NFs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.