Abstract

Analysis of the electrohydrodynamic (EHD) equations of motion of a planar liquid-lithium surface in the presence of a normal electric field suggest that liquid lithium may provide a large-area ion source for intense ion-beam diodes. Such sources are being developed for the Particle Beam Fusion Accelerator II at Sandia National Laboratories. In this paper, theoretical and experimental studies of the planar EHD ion source will be reviewed. When a planar liquid surface is subjected to an electric field of sufficient magnitude, EHD instabilities produce an array of cusps on the surface. The electric field enhancement at the apex of each cusp is sufficient to permit field evaporation of ions. The time delay between application of the electric field and ion emission depends on the magnitude and rate of increase of the applied electric field, and on the initial amplitude of the surface perturbation. Above 10 MV/cm, theory indicates that field emission will occur on a nanosecond time scale and that the characteristic spacing of emitters will be <1 μm. At these fields, the source should have an intrinsic divergence of <6 mrad and the effects of space charge from neighboring emitters should not inhibit emission significantly. Experimental measurements of wavelengths and cusp-formation-times for water and ethanol at electric fields near the critical field for instability have agreed well with theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.