Abstract

The electrohydrodynamic thrust generated by wire–cylinder electrodes under high dc voltage is experimentally analyzed. Some recent experimental studies have shown that electrohydrodynamic thrusters produced by corona discharge and ionic wind are able to deliver high thrust-to-power ratio, which reopens prospects for electrohydrodynamic propulsion. From simple considerations based on ultralight aircraft mass, aerodynamics, battery mass, and experimental electrohydrodynamic thrust densities, their potential for applications is showcased. Furthermore, an experimental study is performed, for which the experimental observations are presented in terms of electric field and thrust density. This allows a simplified and synthetic presentation of propulsive properties. Various experimental biases have been identified and corrected. The measure of time-periodic oscillations of the airflow in the back of the thruster pinpoints a possible wake effect due to the impact of ionic wind on electrodes. The variations of the associated drag are studied when varying the position of the collecting electrodes. It is shown that aerodynamic losses can be significant in experimental electrohydrodynamic thrusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.