Abstract
Many electro-spraying devices raise to a high electric potential a pendant drop of weakly conducting fluid, which may adopt a conical shape from whose apex a thin, charged jet is emitted. Such a jet eventually breaks up into fine droplets, but often displays surprising longevity. This paper examines the stability of an incompressible cylindrical jet carrying surface charge in a tangential electric field, allowing for the finite rate of charge relaxation. The viscosity is assumed to be small so that the shear resulting from the tangential surface stress can be large, even for relatively small fields. This shear can suppress surface tension instabilities, but if too large, it excites electrical ones. For imperfect conductors, surface charge is redistributed by the rapid fluid reaction to variations in tangential stress as well as by conduction. Phase differences between the effects due to the tangential field and the surface charge lead to charge ‘over-relaxation’ instabilities, but the maximum growth rate can still be lower than in the absence of electric effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.