Abstract

AbstractSilver nanoparticle (AgNP) based inks are widely used in printed electronics to form conductive patterns. However, high resolution and high electrical conductivity are still hard to achieve at the same time for the patterning of AgNP‐based electrodes. Herein, Ag patterns with a high resolution of sub‐10 µm and a high conductivity are realized by the electrohydrodynamic (EHD) printing. The parameters including the composition of Ag ink, printing speed, voltage, and working height are carefully controlled to increase the resolution, and the process window of the cone jet mode is established. With the help of the finite element simulation, the generation mechanism of the Taylor cone is clarified. Ag electrodes with various patterns and shapes are easily produced, which exhibited excellent patterning qualities, such as superior uniformity and flatness, narrow spacing, and clear edge definition. Finally, flexible light‐emitting diode (LED) circuits, transparent heaters, and supercapacitors are fabricated by EHD printed Ag grid electrodes. These results indicate that this work provides a simple and scalable strategy for fabricating ordered metal conductive patterns in the emerging printed electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.