Abstract

In this paper, we investigate the effect of perpendicular electric field on the linear analysis of Kelvin–Helmholtz instability of a plane interface between two viscous and dielectric fluids, when the fluids are subjected to constant normal electric field and, when there is heat and mass transfer across the interface. We use viscous correction for the viscous potential flow theory in which the discontinuities in the irrotational tangential velocity and shear stress are eliminated in the global energy balance by taking viscous contributions to the irrotational pressure. A quadratic dispersion relation that accounts for the growth of disturbance waves is obtained and stability criterion is given in terms of a critical value of relative velocity as well as applied electric field. It is observed that heat transfer and perpendicular electric field both have destabilizing effect while vapor fraction stabilizes the interface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.