Abstract

A computer model of Electrohydrodynamics within an insulating liquid in an electrostatic fuel injector has been developed. The most important effect is the emission of charge carriers from the charge injection electrode and their spatial distribution in the fluid. For a given geometry of the nozzle, fluid properties inflow rate, and applied potentials at the electrodes, a numerical model has been developed which gives the velocity, hydrodynamic pressure, electric field, electric potential and space charge density distributions. The space charges density that exits the nozzle orifice governs the liquid jet disintegration process. The total current injected into the fuel oil at the injection electrode is divided between the spray current and nozzle body leakage current. Based on the calculated results, it is possible to optimize the nozzle geometry so that the leakage current to total current ratio is minimal. Preliminary experimental results are in good agreement with the computer model prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.